RFS Curriculum

Mathematics is a fundamental element that helps us to understand and change the world that we live in. We want all pupils at Redcastle Family School to experience the beauty, empowerment and enjoyment of mathematics and develop a sense f curiosity about the subject with a clear understanding. At Redcastle Family School, we foster positive 'can do' attitudes and we promote the fact that 'We can all do maths!' This works alongside our school vision of, 'To give every child the skills and self-belief to succeed.'
We believe all children can achieve in
At our school, the majority of children will be taught the content from their year group only, with learning objectives being the knowledge needed for the specific year group. Where necessary, intervention groups are used to fill gaps in children's learning. We ensure that the children have a secure understanding of each skill before moving on. This is achieved through assessment for learning and daily interventions are used when necessary. They will spend time becoming true masters of content, applying and being creative with new knowledge in multiple ways.
We have organised our curriculum in a way that enables us to use the summer term to re-visit prior learning and develop this even further to deepen the children's learning and understanding of the concept. Our curriculum involves us focusing on predominantly number during the Autumn Term. We have decided on this because number underpins the fundamental understanding of mathematics and therefore, by grasping this concept it will enable the children to apply this within a range of different concepts. The key threads of maths that will be evident throughout the curriculum are number and place value, shape, space and measure, problem solving and reasoning. Arithmetic skills are a key thread throughout the school with a fluent in 5 starter at the beginning of every lesson. This will ensure that children develop a secure mathematical understanding. These threads will then be built upon in each year group to meet the needs of the National Curriculum We aim for all pupils to

- become fluent in the fundamentals of mathematics so that they develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
-be able to solve problems by applying their mathematics to a variety of problems with increasing sophistication, including in unfamiliar contexts and to model real-life scenarios.
ically by following a line of enquiry and develop and present a justification, argument or proof using mathematical language.

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Why do we teach this: How does it build upon prior learning:	Why do we teach this: Place value is a vital skill in order for children to develop their mathematical understanding. Children need to understand the structure of number and how they can be represented in different ways as well as knowing how to count forwards and backwards across 100. The children need to develop fluency in addition and subtraction facts within 10. Children need to use number bonds to and within 10. The children need to know that a multiple of 10 is made up of a number of tens, such as 50 being made up of five tens. The children need to know how to use manipulatives in order to support them to solve multiplication problems. How does it build upon prior learning:	Why do we teach this: Place value underpins the mathematical concept for the Year 2 curriculum. Children need to develop their fluency at being able to count on in steps of 2,3 and 5 from any number following on from counting on in ones. The children need to know how to add and subtract numbers across ten. The children need to recognise the subtraction structure of 'difference' and answer questions of 'how many more?' They need to know how to add and subtract within 100 . Children need to have knowledge of mathematical vocabulary such as 'commutative' and to know that this applies to addition and not subtraction. The children need to recognise the link between repeated addition and multiplication using the 25 and 10 times tables and understand that these concepts are commutative. They need to know how to recognise if a number is odd or even. The children need to recall division facts for 2,5 and 10 times tables and recognise that division is not commutative.	Why do we teach this: Children need to recognise and understand the value of each digit within a three-digit number. They also need to identify the next multiples of ten and one hundred. They will divide 100 into $2,4,5$ and 10 equal parts in order to read scales on number lines. Children need to be secure in their fluency of addition and subtraction facts that bridge 10 . Children need to understand the place value of each number to help them use the column method for adding and subtracting up to three-digit numbers. Children need to know how to apply the inverse operation when adding and subtracting. They need to develop their reasoning skills to be able to solve missing number problems. Children need to recall multiplication and division facts of $2,3,4,5,8$ and 10 times tables and understand the corresponding facts. The children need to begin to know how to use formal written methods for multiplication (two-digit by one-digit).	Why do we teach this: Children need to recognise and understand the value of each digit within a four-digit number. They also need to have an understanding of negative numbers and to be able to count backwards through the zero. Roman Numerals will be taught to be linked in with The Romans topic. Children need to develop an awareness of how to round any given number to the nearest 10,100 or 1000. Children need to be able to use known facts (scaling) in order to solve addition and subtraction calculations. They need to consolidate their understanding of using the column method using four-digit numbers. They need to develop their ability to estimate in order to check answers. Children need to recall all of the multiplication and division facts up to 12×12. They need to be able to apply factor pairs mentally. The children need to understand that you can make a number 10 or 100 times greater or smaller by multiplying or dividing it by 10 or 100 . Children will need to be secure in using formal methods for multiplication and division. They need to solve multiplication problems using their taught methods.	Why do we teach this: Children need to develop their knowledge of place value by extending this to the value of numbers up to 1 000000 . They will also need to count forwards and backwards through zero. Children need to have knowledge of Roman Numerals to 1000 as this will be the last time that it is covered at Redcastle Family School. Children need to apply place value knowledge to known additive and multiplicative number facts (scaling facts by one tenth or one hundredth). They need to select the appropriate operation to apply to multi-step word problems and check their answers through rounding. The children need to have secure fluency in multiplication facts. They need to know how to make numbers one tenth greater or smaller or one hundredth greater or smaller. They need to know how to find factors and multiples of whole numbers. They need to have secure written methods to know how to multiply a four-digit number by a one-digit number. This then needs to progress to multiplying decimals. They need to know how to recognise and use squared and cubed numbers. They need to understand the make-up of a prime number and be familiar with the vocabulary of prime-	Why do we teach this: Children need to know the value of each digit in numbers up to 10000000 as well as being able to order and compare them. By having this understanding, will enable the children to have the capacity to access further elements of knowledge in the Year 6 curriculum. The children will use their knowledge that they have acquired and apply these skills to problems within a context. The children need to understand that two numbers can be related additively or multiplicatively and quantify additive and multiplicative relationships. They need to be able to complete calculations using arithmetic properties. They need to have a secure understanding of the order of operations and how to apply this within calculations. They need to be secure at solving calculations mentally. The children need to know how to multiply and divide a four-digit number by a two digit number and apply this to multi-step problems within a context. How does it build upon prior learning: Children have developed their knowledge of the place value of numbers up to 1000000 , they are

		How does it build upon prior learning: Place value in Year 2 builds by children being able to understand how to partition a number and know the value of each digit. Children will be able to compare other numbers using < > =. Using the fluency that has been developed of addition and subtraction number facts within 10 . Using their knowledge of number bonds within ten. To develop their understanding of portioning of two digit numbers. The children will have knowledge of counting in multiples of 2,5 and 10 and use these in everyday contexts.	This builds upon the children's knowledge of two digit numbers to extend it to three digit numbers. To build upon their knowledge of number bonds to 9 and 10 . The children will have experienced the commutative property of addition and have written the equation in different ways. The children will have knowledge of the 2,5 and 10 times tables to be able solve calculations.	How does it build upon prior learning: Children will have knowledge of using three-digit numbers and they will have identified the previous and next multiples of 10 and 100 . Children will have experienced using the column method with three-digit numbers in Year 3. Children will have experienced applying place value knowledge for scaling facts by 10 . The children will know how to multiply numbers by ten and divide numbers that are multiples of ten by ten.	factors and composite numbers. They need to solve multi-step multiplication and division problems by applying their taught methods. How does it build upon prior learning: Children will have knowledge of using and understanding the place value of four digit numbers. Children know how to count backwards through zero. Children will have knowledge of Roman Numerals to 100. Children will have experienced using known facts (scaling by 100). They will know how to round any number to the nearest 10,100 or 1000 . The children will know how to recall all multiplication and division facts up to 12×12. They will have experienced multiplying and dividing whole numbers by 10 and 100 .	able to round any given number to the nearest $10,100,1000,10000$ and 100000. The children will be fluent in all additive and multiplicative number facts. The children will have a secure understanding of multiplying a fourdigit by one-digit number using formal written methods.
Autumn Term						
	Place Value: Counting To know how to count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number To know how to count numbers to 100 in numerals; count in multiples of twos, fives and tens Place Value: Represent To know how to identify and represent numbers using objects and pictorial representations. To know how to read and write numbers to 100 in numerals To know how to read and write numbers from 1 to 20 in numerals and words Place Value: Problems and Rounding To know how to identify one more and one less of a given number. Addition \& Subtraction: Recall, Represent, Use	Place Value: Counting To know how to count in steps of 2, 3 and 5 from 0 , and in tens from any given number, forward and backward Place Value: Represent To know how to read and write numbers to at least 100 in numerals and in words To know how to identify, represent and estimate numbers using different representations, including the number line Place Value: Use PV and Compare To know how to recognise the place value of each digit in a twodigit number (tens, ones) To know how to compare and order numbers from 0 up to 100; use <, > and $=$ signs Place Value: Problems and Rounding To know how to use place value and number facts to solve problems	Place Value: Counting To know how to count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number Place Value: Represent To know how to identify, represent and estimate numbers using different representations To know how to read and write numbers up to 1000 in numerals and in words Place Value: Use PV and Compare To know how to recognise the place value of each digit in a threedigit number (hundreds, tens, ones) To know how to compare and order numbers up to 1000 Place Value: Problems and Rounding To know how to solve number problems and practical problems involving these ideas	Place Value: Counting To know how to count in multiples of $6,7,9,25$ and 1000 To know how to count backwards through zero to include negative numbers Place Value: Represent To know how to identify, represent and estimate numbers using different representations To know how to read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value Place Value: Use PV and Compare To know how to find 1000 more or less than a given number To know how to recognise the place value of each digit in a fourdigit number (thousands, hundreds, tens, and ones)	Place Value: Counting To know how to count forwards or backwards in steps of powers of 10 for any given number up to 1000 000 To know how to count forwards and backwards with positive and negative whole numbers, including through zero Place Value: Represent To know how to read, write, order and compare numbers to at least 1 000000 and determine the value of each digit To know how to read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals Place Value: Use PV and Compare To know how to read, write, order and compare numbers to at least 1 000000 and determine the value of each digit Place Value: Problems and Rounding	Place Value: Represent To know how to read, write, order and compare numbers up to 10000000 and determine the value of each digit Place Value: Use PV and Compare To know how to read, write, order and compare numbers up to 10000000 and determine the value of each digit Place Value: Problems and Rounding To know how to round any whole number to a required degree of accuracy To know how to use negative numbers in context, and calculate intervals across zero To know how to solve number and practical problems that involve all of the above Addition and Subtraction: Calculations

To know how to read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals ($=$) signs To know how to represent and use number bonds and related subtraction facts within 20 Addition and Subtraction: Calculations To know how to add and subtract one-digit and two-digit numbers to 20 , including zero Addition and Subtraction: Solve Problems To know how to solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = - - -9 Multiplication \& Division: Solve Problems To know how to solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Addition \& Subtraction: Recall, Represent, Use To know how to recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot To know how to recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Addition and Subtraction: Calculations To know how to add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers adding three one-digit numbers Addition and Subtraction: Solve Problems To know how to solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods Multiplication and Division: Recall, Represent, Use To know how to recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers To know how to show that multiplication of two numbers can be done in any order	Addition \& Subtraction: Recall, Represent, Use To know how to estimate the answer to a calculation and use inverse operations to check answers Addition and Subtraction: Calculations To know how to add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds To know how to add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Addition and Subtraction: Solve Problems To know how to solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction Multiplication and Division: Recall, Represent, Use To know how to recall and use multiplication and division facts for the 3,4 and 8 multiplication tables Multiplication and Division: Calculations To know how to write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Multiplication \& Division: Solve Problems To know how to solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and

To know how to order and compare numbers beyond 1000

Place Value: Problems and

 RoundingTo know how to round any number to the nearest 10,100 or 1000
To know how to solve number and practical problems that involve all of the above and with increasingly large positive numbers

Addition \& Subtraction

To know how to estimate and use
inverse operations to check
answers to a calculation

Addition and Subtration

Calculations

To know how to add and subtract nue formal written methods of columnar addition and subtraction where appropriate

Ada

Problems
To know how to solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

Multiplication and Division: Recall, Represent, Use
To know how to recall
multiplication and division facts for multiplication tables up to 12×12

To know how to use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
To know how to recognise and use factor pairs and commutativity in factor pairs and con
mental calculations

To know how to inte
numbers in context
To know how to round any number up to 1000000 to the nearest 10 , 100, 1000, 10000 and 100000

To know how to solve number problems and practical problems that involve all of the above

Addition \& Subtraction:

Recall, Represent, Use
To know how to use rounding to check answers to calculations and problem, levels of accuracy

Addition and Subtraction:

 CalculationsTo know how to add and subtract whole numbers with more than 4 written methods (columnar addition and subtraction)

To know how to add and subtract numbers mentally with increasing large numbers

Addition and Subtraction: Solve

 ProblemsTo know how to solve addition and
subtraction multi-step problems in contexts, deciding which
perations and methods to use and
why
To know how to solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign

Multiplication and Division: Recall,

 Represent, Use To know how to identify multiples and factors, including finding all common factors of two numberTo know how to perform mental calculations, including with mixed operations and large numbers

To know how to use their
knowledge of the order of
operations to carry out calculations
involving the four operations
Addition and Subtraction: Solve Problems
To know how to solve addition and subtraction multi-step problems in contexts, deciding which why

Multiplication and Division: Recall, Represent, Use
 To know how to identify common

 factors, common multiples andprime numbers

To know how to use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy

Multiplication and Division:

 CalculationsTo know how to multiply multidigit numbers up to 4 digits by a
two-digit whole number using the two-digit whole number using the formal written method of Ion multiplication

To know how to divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
To know how to divide numbers up to 4-digits by a two-digit whole number using the formal written appropriate for the context

(commutative) and division of one number by another cannot Multiplication and Division: Calculations To know how to calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs Multiplication \& Division: Solve Problems To know how to solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	correspondence problems in which n objects are connected to m objects	Multiplication and Division: Calculations To know how to multiply two-digit and three-digit numbers by a onedigit number using formal written layout Multiplication \& Division: Solve Problems To know how to solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as ' n ' objects are connected to ' m ' objects

To know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers

To know how to establish whether a number up to 100 is prime and recall prime numbers up to 19

To know how to recognise and square numbers and cube otation for and cubed (3)

Calculations Calculations
To know how to multiply numbers digits by a one- or two-digit number using a formal writt method, including long numbers
To know how to multiply and divide numbers mentally drawing upon known facts

To know how to divide numbers to 4 digits by a one-digit number using the formal written method of short division and interpret context

To know how to multiply and divide whole numbers and those nvolving decimals by 10,100 and 1000

Multiplication \& Division: Solve Problems
To know how to solve problems involving multiplication and division including using the knowledge of factors and multiples, squares and cubes

To know how to solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rate

Multiplication and Division

 Combined Operations To know how to solve problemTo know how to perform mental calculations, including with mixed operations and large numbers

Multiplication \& Division: Solve

 ProblemTo know how to solve problems
involving addition, subtraction,
multiplication and division
Multiplication and Division: Combined Operations knowledge of the order of operations to carry out calculations involving the four operations
ractions: Compare
To know how to use common factors to simplify fractions; use common multiples to express fractions in the same denomination
compare and order fractions, including fractions >1

Fractions: Calculations
To know how to add and subtract fractions with different denominators and mixed numbers, using the
concept of equivalent fractions
To know how to multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1 / 4} \times \frac{1}{1 / 2}=1 / 8$)

To know how to divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$)

Decimals: Recognise and Write to know how to identify the value hree decimal places

Decimals: Calculations \& Problem
To know how to multiply and divide numbers by 10,100 and 1000 where the answers are up to hree decimal places

To know how to multiply one-digit numbers with up to two decima places by whole numbers

from Year 3. They will also know how to calculate the area of simple 2D shapes.	nearest whole number and compared decimals with 2 dp . The children will have learnt in Year 4 how to calculate the perimeter of rectilinear shapes by counting squares.	
Fractions: Recognise and Write To know how to count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten Fractions: Compare To know how to recognise and show, using diagrams, families of common equivalent fractions Fractions: Calculations To know how to add and subtract fractions with the same denominator Fractions: Solve Problems To know how to solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number Decimals: Recognise and Write To know how to recognise and write decimal equivalents of any number of tenths or hundredths To know how to recognise and write decimal equivalents to $1 / 4$; $1 / 2 ; 3 / 4$ Decimals: Compare To know how to round decimals with one decimal place to the nearest whole number To know how to compare numbers with the same number of decimal places up to two decimal places Decimals: Calculations \& Problems To know how to find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths	Fractions: Recognise and Write To know how to identify, name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths To know how to recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (e.g. ${ }^{2} / 5+4 / 5=6 / 5=1^{1} / 5$) Fractions: Compare To know how to compare and order fractions whose denominators are all multiples of the same number Fractions: Calculations To know how to add and subtract fractions with the same denominator and multiples of the same number To know how to multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Decimals: Recognise and Write To know how to read and write decimal numbers as fractions (e.g. $0.71={ }^{71} / 100$) To know how to recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents Decimals: Compare To know how to round decimals with two decimal places to the nearest whole number and to one decimal place	Ratio and Proportion To know how to solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts To know how to solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison To know how to solve problems involving similar shapes where the scale factor is known or can be found To know how to solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. Algebra To know how to use simple formulae To know how to generate and describe linear number sequences To know how to express missing number problems algebraically To know how to find pairs of numbers that satisfy number sentences involving two unknowns To know how to enumerate all possibilities of combinations of two variables Measurement: Using Measures To know how to solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate

To know how to recognise and use
language relating to dates months and years

To know how to tell the time to th hour and half past the hour and draw the hands on a clock face to show these times
involving addition and subtraction of money of the same unit, including giving change

Measurement: Time

 To know how to compare and sequence intervals of timeTo know how to tell and write the time to five minutes, including quarter past/to the hour and draw k face to show these times.

To know the number of minutes in in a day.
appears also in Converting)

Measurement: Money
To know how to add and subtract amounts of money to give change using both $£$ and p in practical contexts

Measurement: Tim

To know how to tell and write the time from an analogue clock, including using Roman numerals Irol to XII, and 12-hour and 24 hour clocks

To know how to estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., midnight

To know how to know the number of seconds in a minute and the number of days in each month, year and leap year

To know how to compare durations of events, for example to calculate the time taken by particular events or tasks

Measurement: Perimeter, Area,

Volum

To know how to measure the perimeter of simple 2-D shapes

Fractions, Decimals and

 PercentagesTo know how to solve simple measure and money problems involving fractions and decimals to two decimal places.

Measurement: Using Measures To know how to convert between different units of measure (e.g. kilometre to metre; hour to minute)

To know how to estimate, compare and calculate different measures

Measurement: Money

To know how to estimate, compare indluding money in pounds and including money in pounds and pence

Measurement: Time

To know how to read, write and convert time between analogue and digital 12 and 24-hour clocks

To know how to solve problems involving converting from hours to minutes; minutes to seconds; year to months; weeks to days

Measu

Volume

To know how to measure and calculate the perimeter of
rectilinear figure (including squares) in centimetres and metre

To know how to find the area of rectilinear shapes by counting squares
"To give every child the skills and self-belief to succeed. (10,
 and compare numbers with up three decimal places

Decimals: Calculations \& Problem

 To know how to solve problems involving numbers up to three decimal places
Fractions, Decimals and

 Percentages To know how to ecognise the percent symbol (\%) relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimalTo know how to solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those with a denominator of a multiple of 10 or 25.

Measurement: Using Measures To know how to convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre
and millimetre; gram and kilogram litre and millilitre)

To know how to understand and use approximate equivalences between metric units and commo imperial units such as inches, pounds and pints
To know how to use all four operations to solve problems involving measure (e.g. leng decimal notation including scaling

Measurement: Money To know how to use all four operations to solve problems involving measure

Measurement: Time

To know how to solve problems
involving converting between units

To know how to use, read, write
and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places

To know how to convert betwee miles and kilometres Measurement: Time To know how to use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places

Measure

olume

to know how to shapes with the sam ares can have different perimeters and vice versa

To know how to recognise when it is possible to use formulae for area and volume of shapes

To know how to calculate the area of parallelograms and triangles
o know how to calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and o other units [e.g. mm^{3} and km^{3}]

Geometry: 2-D Shapes using given dimensions and angles

To know how to compare and classify geometric shapes based on their properties and sizes
To know how to illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius

Maths in Early Years and Foundation Stage

Mathematical Vocabulary

$\frac{\text { Three and }}{}$	Communication and Language	- Use a wider range of vocabulary. Four-Year- Olds/Range 5

Number and Place Value

Counting

Three and	Mathematics		- Recite numbers past 5.
Four-Year-			- Say one number name for each item in order: $1,2,3,4,5$.
Olds/Range 5			- Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle').
			-- May enjoy counting verbally as far as they can go
			- - Uses some number names and number language within play, and may show fascination with large numbers
			-- Begin to recognise numerals 0 to 10
Reception/	Mathematics		- Count objects, actions and sounds.
Range 6			- Count beyond ten.
			-- Enjoys reciting numbers from 0 to 10 (and beyond) and back from 10 to 0
			-- Increasingly confident at putting numerals in order 0 to 10 (ordinality)
ELG	Mathematics	Numerical Patterns	- Verbally count beyond 20 , recognising the pattern of the counting system.

Identifining, Representing and Estimating Numbers

Three and Four-Year- Olds/Range 5	Mathematics	- Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). - Show 'finger numbers' up to 5. - Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . - Experiment with their own symbols and marks as well as numerals. - Engages in subitising numbers to four and maybe five - - Counts out up to 10 objects from a larger group - - Matches the numeral with a group of items to show how many there are (up to 10)
Reception Range 6	Mathematics	- Subitise. - Link the number symbol (numeral) with its cardinal number value.

ELG	Mathematics	Number	- Subitise (recognising quantities without counting) up to 5 .
Reading and Writing Numbers			
Three and Four-Year- Olds/Range 5	Mathematics		- Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . - Experiment with their own symbols and marks as well as numerals. -- Explores using a range of their own marks and signs to which they ascribe mathematical meanings
Reception Range 6	Mathematics		- Link the number symbol (numeral) with its cardinal number value. -- Begins to explore and work out mathematical problems, using signs and strategies of their own choice, including (when appropriate) standard numerals, tallies and " + " or " - "
Compare and Order Numbers			
Three and Four-YearOlds/Range 5	Mathematics		- Compare quantities using language: 'more than', 'fewer than'. - Creates their own spatial patterns showing some organisation or regularity - Through play and exploration, beginning to learn that numbers are made up (composed) of smaller numbers -- Beginning to use understanding of number to solve practical problems in play and meaningful activities -- Beginning to recognise that each counting number is one more than the one before -- In meaningful contexts, finds the longer or shorter, heavier or lighter and more/less full of two items
Reception/ Range 6	Mathematics		- Compare numbers. - Shows awareness that numbers are made up (composed) of smaller numbers, exploring partitioning in different ways with a wide range of objects
ELG	Mathematics	$\begin{aligned} & \text { Numeric } \\ & \hline \text { al } \\ & \hline \text { Patterns } \end{aligned}$	- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
Understanding Place Value			

Redcastle Family School			"To give every child the skills and self-belief to succeed." - Understand the 'one more than/one less than' relationship between consecutive numbers. - Explore the composition of numbers to 10. - - In practical activities, adds one and subtracts one with numbers to 10	
Reception/ Range 6	Mathematics			
ELG	Mathematics	Number	- Have a deep understanding of numbers to 10, including the composition of each number.	
Solve Problems				
Three and Four-YearOlds/Range 5	Mathematics		- Solve real world mathematical problems with numbers up to 5. -- Attempts to create arches and enclosures when building, using trial and improvement to select blocks -- Through play and exploration, beginning to learn that numbers are made up (composed) of smaller numbers -- Beginning to use understanding of number to solve practical problems in play and meaningful activities	

Addition and Subtraction

Mental Calculations

Reception/ Range 6	Mathematics		- Automatically recall number bonds for numbers $0-5$ and some to 10 . - In practical activities, adds one and subtracts one with numbers to 10 - - Begins to explore and work out mathematical problems, using signs and strategies of their own choice, including (when appropriate) standard numerals, tallies and " + " or "-"
ELG	Mathematics	Number	- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.
Solve Problems			
ELG	Mathematics	$\frac{\text { Numerica }}{1 \text { Patterns }}$	

Measurement

Telling the Time			
Three and $\frac{\text { Four-Year- }}{}$ Olds/Range 5	Mathematics	- Begin to describe a sequence of events, real or fictional, using words, such as 'first', 'then...' -	

Properties of Shapes

Recognise 2D and 3D Shapes and their Properties

Three and Four-YearOlds/Range	Mathematics	- Talk about and explore 2 D and 3 D shapes for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners', 'straight', 'flat', 'round'', - Select shapes appropriately: flat surfaces for a building, a triangular pattern for a roof, etc. - Combine shapes to make new ones - an arch, a bigger triangle, etc. - Chooses items based on their shape which are appropriate for the child's purpose - - Responds to both informal language and common shape names \because - Shows awareness of shape similarities and differences between obiects -. Eniovs partitioning and combining shapes to make new shapes with 2 D and 3D shapes -- Attempts to create arches and enclosures when building, using trial and improvement to select blocks
Reception/ Range 6	Mathematics	- Select, rotate and manipulate shapes in order to develop spatial reasoning skills. - Uses informal language and analogies, (les. heart-shaped and hand-shaped leaves), as well as mathematical terms to describe shapes - Uses own ideas to make models of increasing complexity, selecting blocks needed, solving problems and visualising what they will build
Comorare and Classify shapes		
Reception/ Range 6	Mathematics	- Compose and decompose shapes so that children can recognise a shape can have other shapes within it, just as numbers can. - Enjoys composing and decomposing shapes, learning which shapes combine to make other shapes

Position and Direction

Position, Direction and Movement

$\begin{aligned} & \frac{\text { Three and }}{\text { Four-Year- }} \\ & \text { olds/Range } 5 \end{aligned}$	Mathematics	- Understand position through words alone - for example, "The bag is under the table," - with no pointing. - Describe a familiar route. - Discuss routes and locations, using words like 'in front of' and 'behind'. - Responds to and uses language of position and direction - Predicts, moves and rotates objects to fit the space or create the shape they would like
Reception Range 6	Understanding the World	- Draw information from a simple map. -Uses spatial language, including following and giving directions, using relative terms and describing what they see from different viewpoints -• Investigates turning and flipping objects in order to make shapes fit and create models; predicting and visualising how they will look (spatial reasoning) -- May enioy making simple maps of familiar and imaginative environments, with landmarks
Patterns		
Three and Four-Year- Olds/Ranges 5	Mathematics	- Talk about and identify the patterns around them. For example, stripes on clothes, designs on rugs and wallpaper. Use informal language like 'pointy', 'spotty', 'blobs', etc. - Extend and create ABAB patterns - stick, leaf, stick, leaf. - Notice and correct an error in a repeating pattern. - Creates their own spatial patterns showing some organisation or regularity - Explores and adds to simple linear patterns of two or three repeating items, e.g. stick, leaf (AB) or stick, leaf, stone (ABC) - Joins in with simple patterns in sounds, objects, games and stories dance and movement, predicting what comes next
Reception/ Range 6	Mathematics	- Continue, copy and create repeating patterns. - - Spots patterns in the environment, beginning to identify the pattern "rule" - - Chooses familiar objects to create and recreate repeating patterns beyond $A B$ patterns and begins to identify the unit of repeat

Statistics

Record, Present and Interpret Data

$\frac{\text { Three and }}{}$	Mathematics	-Experiment with their own symbols and marks, as well as numerals.
Four-Year- Olds $/$ Range 5		

